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Abstract

A simple 4-node assumed-stress hybrid quadrilateral shell element with rotational or

"drilling" degrees of freedom is formulated. The element formulation is based directly

on a 4-node dement. This direct formulation requires fewer computations than a simi-

lar element that is derived from an "internal" 8-node isoparametrie element in which the

midside degrees of freedom are eliminated in favor of rotational degrees of freedom at the

corner nodes. The formulation is based on the principle of minimum complementary en-

ergy. The membrane part of the element has 12 degrees of freedom including rotational

degrees of freedom. The bending part of the dement also has 12 degrees of freedom. The

bending part of the element uses the Reissner-Mindlin plate theory which takes into ac-

count the transverse shear effects. Quadratic variations for both in-plane and out-of-plane

displacement fields and linear variations for both in-plane and out-of-plane rotation fields

are assumed along the edges of the element. The element Cartesian-coordinate system is

chosen such as to make the stress field invariant with respect to node numbering. The

membrane part of the stress field is based on a 9-parameter equilibrating stress field, while

the bending part is based on a 13-parameter equilibrating stress field. The element passes

the patch test, is nearly insensitive to mesh distortion, does not "lock," possesses the de-

sirable invariance properties, has no spurious modes, and produces accurate and reliable
results.

Introduction

Finite element researchers face what seems to be an endless challenge to formulate simple

3-node and 4-node shell elements that are free from the usual deficiencies, such as locking,

sensitivity to mesh distortion, non-invariance, and spurious modes. From the inception of

the standard 4-node isoparametric element, researchers realized that this element exhib-

ited severe locking and was very sensitive to mesh distortion. Ever since, researchers have

considered a variety of methods to overcome these deficiencies. These methods have elim-

inated some of the shortcomings of the standard 4-node isoparametric element. However,

some new difficulties such as non-invariance and spurious modes were introduced. Some

of the milestones in the quest for a defect-free 4-node element are:

(1) Assumed-stress hybrid elements (Plan[I]).

(2) Reduced integration (Zienkiewicz et al.[2] and Pawsey and Clough[3]).

(3) Incompatible elements (Wilson et al.[4] and Taylor et al.[5]).



Another method of attacking the shortcomings of membrane elements is to include the

nodal rotational or "drilling" degrees of freedom in the element formulation. In early

attempts, these rotational degrees of freedom were used in cubic displacement functions.

However, Irons and Ahmad demonstrated that this approach had serious deficiencies[6].

The elements formed in this manner force the shearing strain to be zero at the nodes, and

these elements do not pass the patch test, which could produce erroneous results in some

structural analysis problems. Recently researchers have used these rotational degrees of

freedom in quadratic displacement functions with more success[7-11]. In previous papers,

this latter method has been employed in the following way. First, the element is inter-

nally assumed to be an 8-node isoparametric element with 4 corner nodes and 4 midside

nodes each having two displacement degrees of freedom, and the stiffness matrix associ-

ated with this "internal" element is calculated. Then, this stiffness matrix is condensed to

that corresponding to a 4-node element with 12 degrees of freedom by associating the dis-

placement degrees of freedom at the midside nodes with the displacement and rotational

degrees of freedom at the corner nodes. MacNeal[9] has used this approach to develop

a 4-node displacement-based membrane element with selective reduced-order integration.

Yunus et al.[10] have also used this method to develop an assumed-stress hybrid/mixed

membrane element. Aminpour[11] has also used this method to develop an assumed-stress

hybrid/mixed shell element.

In this paper, a 4-node assumed-stress hybrid quadrilateral shell element with rotational

degrees of freedom is presented. The formulation is based directly on a 4-node element

from the beginning in contrast to elements whose formulations began with an "internal"

8-node element. Formulating the element in this manner bypasses the formation of the

stiffness matrix for an 8-node isoparametric element and the subsequent transformation of

this stiffness matrix to that corresponding to stiffness matrix of a 4-node dement. This

method is advantageous in that the element formulation is more direct and savings in

computations are accrued. Results are presented for several standard test problems to
establish the robustness of this element.

Hybrid Variational Principle

The classical assumed-stress hybrid formulation of Pian[1] is based on the principle of

minimum complementary energy. The displacements are described on the element bound-

ary and an equilibrating stress field is described over the the domain of the element. It

was later recognized that the same method may be derived from the Hellinger-Reissner

principle[12-14]. However, in the Hellinger-Reissner principle, the stress field does not have

to satisfy the equilibrium equations a priori, and the displacement field has to be described

over the domain of the element and not just on the boundaries. The stress field would

then satisfy the equilibrium equations only in a variational sense. Therefore, the stress

field may be described in the natural-coordinate system of the element which would make

the element less sensitive to mesh distortion, and a proper selection of the stress field would

make the element invariant with respect to node numbering. Because of these desirable

properties, researchers have developed assumed-stress hybrid/mixed elements using the

HeUinger-Reissner principle. For example, the membrane element in reference [10] and the
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shell element in reference [11] were both developed using the Hellinger-Reissner principle.

However, an assumed-stress hybrid 4-node shell element similar to that of reference [11]

may also be easily formulated using the minimum complementary energy principle with

the advantage being that only the displacements on the boundary of the element enter

into the formulation. As such, the formulation is then based directly on a 4-node element

rather than internally formulated as an 8-node element and then condensed to a 4-node
element.

The invariant properties of the element is preserved by proper choice of a local element

Cartesian-coordinate system. The local element Cartesian-coordinate system is shown in

Figure 1 and is obtained by bisecting the angles formed by the diagonals of the element.

The axes of this coordinate system are approximately parallel to the edges of the element

for non-rectangular geometries (e.g., tapered and skewed elements) which would make the

element less sensitive to mesh distortion. Upon node renumbering, this coordinate system

is rotated by 90 o increments. For example, if the connectivity for the element shown in

Figure 1 is changed from 1-2-3-4 to 2-3-4-1, then the element local x-y axes in Figure 1

would rotate by 90 °. Therefore, selecting stress fields that are invariant with respect to a

90 o rotation would make the element invariant with respect to node numbering.

The formulation of the element presented herein is based on the principle of minimum

complementary energy. The details of the assumed-stress hybrid formulation using the

minimum complementary energy principle have been extensively discussed in the literature,

(e.g., see reference [1]), and hence, only a brief outline is given herein for completeness.

The variational functional is given as

II=-_l/v_TD_dV+jfs_TnudS-fs, uTtodS (1)

where D is the compliance matrix of the material, er is the stress array, u is the displacement

array, to is the prescribed traction array, matrix n consists of the components of the

outward unit normal to the boundary of the element such that nTcr = t (traction array),

V is the domain of the element, S is the boundary of the element, and St is the part of

S where to is specified. The assumed-stress hybrid formulation is based on assuming an

equilibrating stress field in the interior of the element as

(2)

and assuming the displacement field only on the boundary of the element as

u--Nq (3)

where the matrices P and N consist of the appropriate interpolating functions for stresses

and displacements, respectively, and the coefficients _ and q are the unknown stress pa-

rameters and nodal displacements and rotations, respectively.

The expressions for stresses in equation (2) and displacements in equation (3) are substi-

tuted into the functional II of equation (1) and the variation of the functional with respect

to the internal unknowns/3 is set to zero. This stationary condition gives

f3 = H-1Tq (4)



where

H = Iv pTDPdV

T = fs pTnNdS

(5)

(6)

Upon substitution of the expression for fl in equation (4) into the functional II of equation

(1) and a subsequent variation of the functional with respect to the nodal unknowns q

yields

Kq--F (7)

where the stiffness matrix K is given by

K = TTH-1T (S)

and the generalized force array F by

F = fs NTt°dS (9)
t

Formulation of 4-Node Quadrilateral Element

Displacement Field Description

As discussed previously, all three displacement components on the element boundary are

assumed to vary quadratically and all three rotational components to vary linearly. The

expressions for these boundary displacements and rotations were derived in detail in refer-

ence [11] and only the final results are given herein. The in-plane boundary displacements

on edge 1 of Figure 1 are given by

1 1u= (1 - _)ul + _(1 + _)u2 + (1 - _2)(8z2 - Ozl)
(10)

v = 3(1-_)vl + (1+_)v_- zxs--z_(1-_2)(°z=s -0zl)

and the out-of-plane boundary displacement and rotations on edge 1 of Figure 1 are given

by

2 1 _ As _2w= (1-_)wl+_(l+_)w_- (1-_2)(e_-e=l)+-g-(1 - )(8_a-e_,)

/9= = 2(1 - {)8_1 + 1(1 + {)/9=2 (11)

e_ = 1(1 - e)e_, + 1(1 + e)ey=

where, As1 and Ayl are the Am and Ay of edge 1 with respect to the reference local

element s-y coordinate system (e.g., As1 = z2 - zl ) and { is a non-dimensional coordinate



on edge 1 such that _ = -1 at node 1 and _ = +1 at node 2. It is worth mentioning here

that the true nodal normal rotations are, of course, given by a-t°" 0,_2 _ 0_ 0u ) evaluated at the
nodes. Hence, the terms Ozi are not true nodal rotations, and they may be referred to

as "rotational connectors"[7]. The description for the displacements and rotations on the

other edges of the element are readily obtained.

The description for the in-plane rotation 0z is similar to the out-of-plane rotations 0_ and

0 9. However, the description for the in-plane rotation 0_ is not shown here and it does not

enter into the membrane formulation, while both out-of-plane rotations 0_ and 0u enter into

the bending formulation. Therefore, both membrane part and bending part of the element

are formulated in the same manner. All three displacement components are quadratic

functions, while all three rotations are linear functions. This conformity in the order of the

approximating polynomials for all displacement components and all rotational components

is very desirable in analysis of shell problems. The displacement and rotation descriptions

in equations (10) and (11) allow for in-plane shearing strain and transverse shearing strains,

respectively. This feature is in contrast to cubic interpolations of in-plane or out-of-plane

displacements which force the in-plane shearing strain or the transverse shearing strains

to be zero at the element nodes. As discussed previously, elements constructed using

quadratic interpolation have been more successful. These elements pass the patch test

which is a necessary condition for convergence to the correct solution. The elements using

cubic interpolation, on the other hand, do not pass the patch test and perform poorly for

some structural analysis problems[6].

Equations (10), when extended to all four sides of the element, indicate that for the

membrane part of the element 4 in-plane rotational degrees of freedom in addition to

the usual 8 in-plane displacement degrees of freedom are required to express the in-plane

displacements as quadratic functions. The bending part of the element, on the other hand,

is formulated in terms of the usual 12 out-of-plane displacement and rotational degrees

of freedom and no additional degrees of freedom are required to express the out-of-plane

displacement as a quadratic function.

Therefore, the membrane part of the element has 12 degrees of freedom. Two of these are

the in-plane translational rigid body motions and one is the in-plane rotational rigid body

motion. Of the nine remaining degrees of freedom, three represent the constant strain

states, five represent higher-order strain states, and the final degree of freedom represents

a special type of zero-energy or "spurious" mode. As discussed in reference [11], this zero-

energy mode is of a special type and is different from other spurious mechanisms such

as the hour-glass mode. This zero-energy mode is associated with a state of zero nodal

displacements and equal nodal rotations O_, which renders the in-plane displacements

u and v in equation (10) to be zero on all edges of the element. This mode is shown

in Figure 2 using a cubic interpolation for displacements and may be called the "zero

displacement" mode[7]. As discussed in reference [11], this zero-energy mode appears

because the displacements are based on the differences of the nodal rotations and not the

nodal rotations themselves. Therefore, the membrane part of the element has, in fact,

only 3 independent rotational degrees of freedom but is expressed in terms of 4 rotational

degrees of freedoms. Hence, one of the rotational degrees of freedom is superfluous and



must be eliminated. This zero-energy mode may be eliminated simply by prescribing at

least one rotational degree of freedom in the entire finite element model of the structure.

As discussed earlier, the bending part of the element also has 12 degrees of freedom. One

of these is the out-of-plane translational rigid body motion and two of these are the out-

of-plane rotational rigid body motions. Of the nine remaining degrees of freedom, three

represent the constant curvature states, two represent the constant transverse shear strain

states, and the other four represent higher-order strain states. No zero-energy modes

are associated with the bending part of the element despite the fact the out-of-plane

displacement is also expressed in terms of the differences of nodal rotations. The reason is

that the out-of-plane rotations 0, and 0 r enter into the bending formulation to account for

each one of the out-of-plane nodal rotations, but the in-plane rotation Oz does not enter
into the membrane formulation.

Stress Field Description

The stress field should be selected in such a manner that no spurious zero-energy mode

is produced. A spurious zero-energy mode is produced when the product of a selected

stress term and the strains that are derived from the displacement functions produces

zero strain energy under a particular, but not trivial, deformational displacement field. In

order to avoid spurious zero-energy modes, each independent stress term must suppress

one independent deformation mode. Therefore, the minimum number of stress terms

required is equal to the number of degrees of freedom of the element less the number

of rigid body modes. Spurious zero-energy modes generally occur for regular geometries

such as rectangular planar elements and brick solid elements and disappear for irregular

geometries[15]. As discussed previously, the stress fields (membrane and bending) are

expressed in a proper Cartesian-coordinate system and selected in such manner as to

remain invariant upon node renumbering. This coordinate system is shown in Figure 1

and the stress fields that are expressed in this coordinate system must remain invariant

under a 900 rotation to remain invariant under node renumbering. The selected stress

fields must also satisfy the equilibrium equations in order to be used in the functional II

of equation (1).

As discussed previously, the membrane part of the element has 12 degrees of freedom, three

of which are due to the in-plane rigid body motions. Therefore, a stress field with a min-

imum of 9 independent parameters is needed to describe the membrane stress (resultant)

field. The following equilibrating stress (resultant) field is considered for the membrane

part

N= = fh + f 4y + + f sy 2

N_ = f12 + flux + f_Ty + j39z 2 (12)

N=y = - Z6y - f Tx

This stress (resultant) field is expressed in the local element Cartesian-coordinate system

shown in Figure 1 and is similar to that proposed by reference [11]. However, in refer-

ence [11] the Hellinger-Reissner principle was used, and the stresses were expressed in the

natural-coordinate system. The first five terms of the stress field in equation (12) represent

the stress field that was used in the original 4-node (see reference [1]) assumed-stress hybrid
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membrane element with 8 degrees of freedom which did not include any normal rotational

degrees of freedom. The remaining four terms are present to suppress the four rotational

degrees of freedom present in this formulation. As discussed in reference [11], this se-

lection of stress field produces no spurious zero-energy modes for the assumed in-plane

displacement field described in equation (10).

As discussed earlier, the bending part of the element has 12 degrees of freedom, three

of which are due to the out-of-plane rigid body motions. Therefore, a stress field with a

minimum of 9 independent parameters is needed to describe the bending stress field. The

following equilibrating stress (resultant) field is selected here for the bending part

U_ = _ + 3_ + _y + 3_y (13)

1 1_M_ = _3+ _10_+ _11y+ _2 + g_3y2

The transverse shearing forces Q_ and Qu are obtained using the equilibrium equations

OM, OM_y

Q_'- Oz + 0---7-

aM u (14)OM_u __
Qu - Oz + Oy

which gives

Q_ = (B. + ¢_1_) + (¢_8 +/_a3)y

Q, = (B, + BI0)+ (B.+ B_2)_ (15)

This stress (resultant) field is expressed in the local element Cartesian-coordinate system

shown in Figure 1 and is similar to that of reference [11]. However, in reference [11],

the tlellinger-Reissner principle was used and the stresses were expressed in the natural-

coordinate system. The stress (resultant) field given by equations (13) and (15) is obtained

by integrating, through the thickness, the stress field that was derived in references [16-18].

The stress field in references [16-18] was derived by expressing the stress components as

power series in the plate thickness, substituting these stresses into the continuum equations

of elasticity, and equating the coefficients of like powers of the plate thickness. This 13

parameter selection of stresses for the bending part is less sensitive to geometric distortion

than a 9 parameter selection obtained from a degenerate solid model[19]. This selection of

stresses produces no spurious zero-energy modes. It is observed that both the membrane

and bending stress (resultant) fields remain invariant upon node renumbering.

In this paper, the Reissner-Mindlin plate theory is used for the bending part. The bending

part of the element is of class C ° and takes into account the effects of transverse shear

deformations by assuming constant transverse shear strains through the thickness of the

plate. This assumption means that the transverse shear stresses are also constant through

the thickness of the plate. However, generally the transverse shear stresses are zero on

the plate surfaces. Therefore, a parabolic variation of transverse shear stresses and strains

through the plate thickness is more reasonable. To account for this discrepancy, a static

correction factor of 5/6 is included in the transverse shear strain energy, see Reissner[20].
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Other Element Matrices

Formulating the element in the manner described above, provides a direct derivation of

the linear stiffness matrix for a 4-node assumed-stress hybrid shell element. However, this

methodology is not carried over to other element matrices because, for element matrices

such as mass and geometric stiffness matrices the displacement functions over the domain

of the element are required. The derivation of these element matrices are based on the

"internal" 8-node element described in reference [11].

The surface traction and pressure loads are assumed to vary bilinearly over the element
surface and the force vector F is calculated for the "internal" 8-node element. This force

vector is then condensed to that of the 4-node element using the approximations for the

midside degrees of freedom described in reference [11]. The calculation of the force vector

F for line loads, however, are conducted based directly on the 4-node element by assuming

linear variation of line loads along the edges of the element and using the displacement

and rotation shape functions of equations (10) and (11).

Numerical Results

The performance of the 4-node quadrilateral shell element developed in this paper is eval-

uated in this section. The element has been implemented in the NASA Langley CSM

Testbed software system[21] using the generic element processor template[22]. Selected

test problems are reported including the patch test, the straight cantilever beam, the

curved cantilever beam, Cook's tapered and swept panel, the Scordelis-Lo roof, and Mor-

ley's spherical shell problem. The assumed-stress hybrid 4-node quadrilateral shell element

derived in this paper will be referred to as AQD4 (Assumed-stress Quadrilateral Direct

4-node element) in the following discussion for convenience. The results for the present

element are compared with the results using the QUAD4 element of the MSC/NASTRAN

from reference [23], the Q4S element from reference [9], the AQ element from reference [10],

the ES1/EX47, ES5/E410, and ES4/EX43 elements of the NASA Langley CSM Testbed,

and the AQR8 element of reference [11]. A brief description of these elements is presented

in the appendix for completeness. The dimensions and properties for the test problems
are chosen in consistent units.

Patch Test

As the first test of the accuracy of the element, the patch test problem suggested in

reference [23] is solved. The patch is shown is Figure 3. Elements are of arbitrary shape

patched together to form a rectangular exterior boundary. As such, boundary conditions

corresponding to constant membrane strains and constant bending curvatures are easy to

apply. The applied displacement boundary conditions and the theoretical solutions are also

shown in Figure 3. The ability of the element to reproduce constant states of strains is an

essential requirement for achieving convergence to the correct solution as the finite element

mesh is refined. This requirement is observed by considering an individual element within

a mesh with a complicated stress field. As the mesh is refined, the stresses within the

elements tend towards a uniform value. Therefore, elements that cannot produce a state

of constant strains should not be trusted to converge to the correct solution as the mesh is



refined[6]. The presentelement(AQD4) passesboth the membrane and the bending patch
tests with no error. The recovered strains and stresses are both exact.

Straight Cantilever Beam

As a second test, the straight cantilever beam problem suggested in reference [23] is solved

for the three discretizations (six elements) shown in Figure 4. The constant and linearly

varying strains and curvatures are produced by applying loads at the free end of the

beam to test the ability of the element to recover these states of deformations. The

theoretical results for extension, in-plane shear, out-of-plane shear, and in-plane moment

are simply calculated from the elementary beam theory including shear deformations.

The theoretical result for the twist is .03406, according to Timoshenko and Goodier's

Theory of Elasticity[24]. Reference [23] quotes the answer to be .03208. Analysis with

three successively refined meshes converged to .03385 which is much closer to the the

theory of elasticity solution than to that of reference [23]. Therefore, the solution from

the theory of elasticity is taken herein for normalization purposes. Normalized results for

the present element along with the results for other elements are shown in Table 1. These

results indicate that all elements perform well for the rectangular mesh. However, for the

trapezoidal and parallelogram meshes which contain considerable amount of distortion,

only the 04S, the AQR8, and the present element (AQD4) perform well. It is noted that

the results (except for the twist end load) are only slightly affected due to the fact that in

this paper the stress field is expressed in the Cartesian-coordinate system. This means that

for higher-order displacement functions it becomes less important to describe the stresses

in the natural-coordinate system. The present element produces an error of less than 3.5%

for all meshes and loads which indicates the insensitivity of the present element to mesh

distortion. The present element also gives very good results for the parallelogram mesh

with a twist end load, while the AQR8 produces an error of 15.9%.

Curved Cantilever Beam

Next, the curved cantilever beam problem shown in Figure 5 is solved. The beam is formed

by a 900 circular arc. In-plane or out-of-plane loads are applied at the free end to produce

in-plane and out-of-plane states of deformations, respectively. The theoretical solutions

are taken to be those quoted in reference [23]. The normalized results from the present

element are tabulated in Table 2. Results using other elements are also shown in Table 2

for comparison. For this problem, the mesh is distorted only slightly and the results for all

elements are good. However, the AQR8 and the present element (AQD4) perform better

than the other elements. Once again, it is noted that the results are only slightly affected

due to the fact that in this paper the stress field is expressed in the Cartesian-coordinate

system.

Cook's Tapered and Swept Panel

The tapered and swept panel with one edge clamped and the other edge loaded by a

distributed shear force is analyzed next (see Fig. 6). This problem was used by Cook

and many other researchers to test the sensitivities of finite elements due to geometric

distortions. The panel was analyzed by a coarse 2×2 mesh and a finer 4×4 mesh. The

reference solution for the vertical displacement at point C is taken to be 23.90 as quoted

in reference [10]. The normalized results for the present element along with the results for



other elements are shown in Table 3. In this problem, the mesh is distorted only slightly

and all elements produce reasonable results. The AQR8 and the present element (AQD4)

however, produce results that are closest to the reference solution.

Scordelis-Lo Roof

The Scordelis-Lo roof is shown in Figure 7. This structure is a singly-curved shell problem

in which both the membrane and bending contributions to the deformation are significant.

The result reported in most papers is the vertical displacement at the midpoint of the

free-edge. The theoretical value for this displacement is quoted in reference [25] to be

0.3086, but the normalization value quoted in reference [23] is 0.3024. The latter value is

also used herein for normalization purposes. Because of symmetry, only one quadrant of

the problem is modeled. The mesh on one quadrant is chosen to be N×N for N-_2,4,6,8,10

(N=number of elements along each edge) to show the convergence of the solutions for the

present element. The results of the normalized displacement at the midside of the free-edge

are shown in Table 4. For this problem, the mesh is made of uniform rectangular-shaped

elements and all the elements in the table perform well. It is observed that convergence rate

to the reference solution for the present element is roughly the same as the other elements

and the addition of the rotational degrees of freedom does not affect the convergence rate

of the present element for this problem.

Morley's Spherical Shell

As a final test of the present element, the pinched hemispherical shell problem shown in

Figure 8 is analyzed. The equator of the shell is chosen to be a free edge so that the

problem represents a hemisphere loaded at four points. The load is alternating in sign at

900 intervals, and an 18 ° hole is present at the top of the hemisphere to avoid needing to

model a pole. This structure is a doubly-curved shell problem and both membrane and

bending contributions to the deformation state are significant. Because of symmetry, only

one quadrant of the problem is modeled. The mesh on one quadrant is chosen to be N x N

for N=2,4,6,8,10,12 (N=number of elements along each edge) to show the convergence of

the solutions for the present element. The results of the normalized displacements at the

load points are shown in Table 5. The theoretical displacement for normalization purposes

is taken to be .0940 from reference [23]. It is seen that the AQR8 and the present element

(AQD4) converge to the correct solution more slowly. In fact, a 14x14 mesh produced a

normalized result of .952 and a 16x16 mesh produced a normalized result of .972 for both

AQR8 and AQD4. The slower convergence of these elements for this problem is attributed

to the fact that nearly all of the strain energy is bending energy even though the membrane

stiffness is much larger than the bending stiffness. Consequently, any small amount of

membrane-bending coupling strongly affects the stiffness of the shell. This membrane-

bending coupling comes about by the coupling between the normal or "drilling" rotation

and the bending rotations by the changes in slope at element intersections[9]. The incorrect

geometry representation causes the slow convergence for these elements. This behavior

shows both the importance and the need for more accurate geometry representations of

shell problems. In reference [9], MacNeal also concluded that the Q4S element converges

slower than the QUAD4 element for this problem for the reasons discussed. However, the

Q4S does converge faster than the AQR8 and AQD4 elements for this problem.
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Conclusions

A simple 4-node quadrilateralshellclement with 24 degrees of freedom has been developed

which alleviatesmost of the deficienciesassociated with such elements. The clement is

based on the assumed-stress hybrid formulation and uses the principleof minimum com-

plementary energy. The membrane part of the element has 12 degrees of freedom and

includes the drilling(in-planerotational)degrees of freedom at the noclcs. The bending

part of the clement also has 12 degrees of freedom. The bending part is of class C o and

takes into account the effectsof transverse shear deformations. Both in-plane and out-

of plane displacements arc assumed to have quadratic variations along the edges of the

clement, while both in-plane and out-of-planerotationsare assumed to vary linearly.A 9-

parameter stress field is assumed for the membrane part and a 13-parameter stress field is

assumed for the bending part. The assumed stress fields satisfy the equilibrium equations.

The formulation of the element is simple and straightforward. The element formulation

is derived directly for a 4-node element. This approach is in contrast to 4-node elements

with rotational degrees of freedom which are derived from "internal" 8-node isoparamet-

ric elements by eliminating the midside degrees of freedom in favor of rotational degrees

of freedom at the corner nodes. This method therefore, bypasses the formation of the

stiffness matrix for an 8-node element and the subsequent transformation of this stiffness

matrix to that of a 4-node element, resulting in savings of computer time. Although, the

stiffness matrix derivation is based directly on a 4-node element, most of the other element

matrices such as the mass matrix still are derived based on an "internal" 8-node element

which makes the derivation and implementation of the element somewhat awkward.

The element has been demonstrated to be accurate, pass both membrane and bending

patch tests, is nearly insensitive to mesh distortion, does not "lock", and has no spurious

modes. The element also has the desirable property of being invariant with respect to

node numbering. The fact that the stresses are expressed in a Cartesian-coordinate system

affects the results only slightly for the moderately distorted elements in the test problems

considered. This behavior indicates that it becomes less important to describe the stresses

in the natural coordinate system when higher-order displacement functions are present.

Additional savings are accrued in this method by expressing the stresses in a Cartesian-

coordinate system because, the tensor transformations of tensorial stresses in the natural-

coordinate system to physical stresses are not performed.

The results obtained herein are very encouraging and warrant further research to make the

derivation of all element matrices more direct and to extend the formulation to stability

analysis, dynamic analysis, and nonlinear analysis.
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Appendix

The following is a brief description of the elements (except the present element) used in

Tables 1-5 for comparison with the present element.

The QUAD4 MSC/NASTRAN element is a 4-node isoparametric shell element with selec-

tive reduced-order integration. The transverse shear uses a string-net approximation and

augmented shear flexibility[26]. This element was developed by MacNeal and is available

in the MSC/NASTRAN finite element code.

The Q4S element is a 4-node shell element in which the membrane part is formulated

internally as an 8-node isoparametric element with selective reduced-order integration and

later reduced to a 4-node element by eliminating the midside degrees of freedom in favor

of rotational degrees of freedom at the corner nodes. This element was developed by

MacNeal[9]. The bending part of the Q4S is the same as that of the QUAD4[9].

The AQ element is a 4-node assumed-stress hybrid/mixed membrane element which is

formulated internally as an 8-node isoparametric membrane element and later reduced to

a 4-node membrane element by eliminating the midside degrees of freedom in favor of

rotational degrees of freedom at the corner nodes. This element was formulated by Yunus

et al.[10]. The only result reported in reference [10] for the cantilever beam problem in

Table 1 using the AQ element is for the mesh with trapezoidal-shaped elements with a

unit in-plane end moment. This result is reported to be .85. The difference in the results

between the AQ membrane element and membrane part of the the AQR8 element described
earlier is in the selection of the assumed-stress functions.

The ES1/EX47 element is a 4-node C O isoparametric assumed natural-coordinate strain

(ANS) shell element developed by Park and Stanley (see, references [27-28]) and imple-

mented in the CSM Testbed Software System[21] by Stanley using the generic element

processor template[22]. This element is not invariant and does not pass the patch test.

This element does not include the drilling degrees of freedom in the formulation.

The ES5/E410 element is a 4-node C 1 shell element which was originally implemented in

the STAGS finite element code and later in the CSM Testbed by Rankin[29]. This element

includes the rotational degrees of freedom in the formulation and uses cubic interpolation

for all the displacement fields. This element is not invariant and does not pass the patch
test.

The ES4/EX43 element is a simple 4-node C o isoparametric assumed-stress hybrid/mixed

shell element implemented in the CSM Testbed by this author[30]. This element passes

the patch test and is invariant with respect to node numbering. This element does not

include the drilling degrees of freedom in the formulation and uses linear interpolation for

all displacement and rotation fields.

The AQR8 element is a 4-node shell element which is formulated internally as an 8-node

isoparametric assumed-stress hybrid/mixed element and later reduced to a 4-node element

by eliminating the midside degrees of freedom in favor of rotational degrees of freedom

at the corner nodes[Ill. This element was also developed and implemented in the CSM

Testbed by this author.
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Table 1. Normalized tip displacements in direction of

loads for straight cantilever beam.

Tip Loading

Direction

QUAD4

MSC/ ES1/ ES5/ ES4/

NASTRAN, EX47_ E410t EX43

(a) rectangular shape elements

AQR8$ AQD4

(present)

Extension

In-plane Shear

Out-of-Plane Shear

Twist

End Moment

.995

.904*

.986

.941"*

.995

.904

.980

.856

.910

.994

.915

.986

.680

.914

(b) trapezoidal shape elements

.996

.993

.981

1.023

1.000

.998

.993

.981

1.011

1.000

.998

.993

.981

1.011

1.000

Extension

In-plane Shear

Out-of-Plane Shear

Twist

End Moment

.996

.071"

.968

.951"*

(c) parallelogram

.761 .991

.305 .813

.763 #

.843 #

.505 .822

.999

.052

.075

1.034

.102

shape elements

.998

.986

.965

1.029

.996

.998

.986

.965

1.009

.995

Extension

In-plane Shear

Out-of-Plane Shear

Twist

End Moment

.996

.080*

.977

.945**

.966

.324

.939

.798

.315

.989

.794

.991

.677

.806

.999

.632

.634

1.166

.781

.998

.977

.980

1.159

.989

.998

.972

.980

1.010

.986

t These elements are not invariant and do not pass the patch test.

:_ Assumed-stresses are in the natural coordinates and do not, in general, satisfy the
equilibrium equations (see aef. [11]).

* The results from MacNeal's Q4S element for in-plane shear load are reported in refer-
ence [9] to be .993, .988, and .986 for the meshes (a), (b), and (c) in Fig. 4 respectively.

** These results for twist were normalized with .03028 in reference [23]. Herein, all
the other results for twist are normalized using .03046 according to Timoshenko and
Goodier's Theory of Elasticity[24].

# The element produces a singular stiffness matrix for this mesh.
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Table 2. Normalized tip displacements in direction of

loads for curved cantilever beam.

Tip Loading

Direction

In-plane Shear

Out-of-Plane Shear

QUAD4

MSC/

NASTRAN

.833

.951

ES1/

EX47

.929

.935

ES5/
E410

.938

.887

ES4/

EX43

.888

.925

AQR8

.997

.956

AQD4

(present)

.996

.956

Table :5. Normalized vertical deflection at point C

for the tapered and swept panel.

Mesh AQ ES1/ ES5/ ES4/ AQR8 AQD4

EX47 E410 EX43 (present)

2 x 2 .914 .880 .873 .882 .930 .926

4 x 4 .973 .953 .953 .962 .979 .979

Table 4. Normalized displacements at the midpoint of

the free-edge for Scordelis-Lo roof.

Mesh

2x2

4x4

6x6

8x8

lOxlO

QUAD4

MSC/
NASTRAN

1.376

1.050

1.018

1.008

1.004

ES1/

EX47

1.387

1.039

1.011

1.005

1.003

ES5/
E410

1.384

1.049

1.015

1.005

1.001

ES4/

EX43

1.459

1.068

1.028

1.017

1.011

AQR8

1.218

1.021

1.006

1.003

1.001

AQD4

(present)

1.218

1.021

1.006

1.003

1.001
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Table 5. Normalized displacements at load points

for hemispherical shell problem.

Mesh

2x2

4x4

6x6

8x8

lOxlO

12x12

QUAD4

MSC/
NASTRAN

.972

1.024

1.013

1.005

1.001

.998

ES1/

EX47

.968

1.018

1.001

.995

.993

.992

ES5/
E410

.338

.519

.841

.949

.978

.988

ES4/

EX43

1.032

1.093

1.060

1.040

1.027

1.020

AQR8

.382

.227

.432

.681

.835

.914

AQD4

(present)

.381

.226

.432

.680

.835

.914

t The drilling degrees of freedom for these elements were not suppressed in this problem.
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X

1
Edge 1 x', _ 2

Figure 1. Element coordinate system definition.

Oz4 =0 z
Oz3 =0 z

Ozl = 0 z ez2 = o z

Figure 2. The "zero displacement" mode.
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b

__.__ ×

Location of nodes:

node z y

1 .04 .02

2 .18 .03

3 .16 .08

4 .08 .08

Applied displacements:

(a) Membrane patch test

Boundary conditions:

Theoretical solution:

(b) Bending patch test

Boundary conditions:

u = lO-3( + v/2)
v = 10-3(z/2 +y)

ezz -= _vy -- 7zv -- 10-3

_r** = crvv = 1333., o', v = 400.

w = --10-3(x 2 + xy + y2)/2

Oz =-10-3(z/2 +y)

8v = -10-a( z + y/2)
Theoretical solution:

Bending moments per unit length:

M, = My = 1.111×10 -7 , M, v = 3.333×10 -s

Surface stresses:

cr** = avv = +0.667, (r, v = +0.200

Figure 3. The patch test problem, a=0.24, b=0.12, t=0.001, E=106, u=0.25.

(Consistent units are used for various properties.)
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! ! I I ! I
a) rectangular shape elements

\ / \ / \ I
b) trapezoidal shape elements

/ / / / / I
c) parallelogram shape elements

Theoretical solutions:

Tip load direction Displacement in direction of load

Extension .3 x 10 -4

In-plane shear .1081

Out-of-plane shear .4321

Twist .03406

In-plane moment .009

Figure 4. Straight cantilever beam problem. Length=6., height=0.2, depth=0.1, E=107,

_,=0.3, mesh=6xl. Loading: unit forces at the free end.
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Theoretical solutions:

Tip load direction Displacement in direction of load

In-plane shear .08734

Out-of-plane shear .5022

Figure 5. The curved cantilever beam problem. Inner radius=4.12, outer radius=4.32,

depth=0.1, E=107, u=0.25, mesh=6×1. Loading: unit forces at the free end.

(Consistent units are used for various properties.)
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I_- 48 --_!(48,60)

(0,44)" J 48,44)

(o,22/

(o,o)
(a)

16

48 -_I

1.0 16

44

Figure 6.

(b)

The tapered and swept panel problem. Thickness=l., E=I., u=1/3,

mesh=NxN. Loading: unit in-plane shear force distributed on the free edge.

Reference solution: vertical displacement at C=23.90 from reference [10].

(a) 2×2 mesh, (b) 4x4 mesh.

(Consistent units are used for various properties.)
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Z

Yx

- Free f.,_

\,\ !/ t"

Figure 7. The Scordelis-Lo roof problem. Length=50., radius=25., thickness=0.25,

E=4.32×10 s, u=0.3, mesh=N×N. Loading: 90. per unit area in vertical direc-

tion, i.e., gravity load; u_=u,=0 on curved edges. Reference solution: vertical

displacement at midpoint of free-edge=0.3024 from reference [23].

(Consistent units are used for various properties.)
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Z

Sym

Sym

F= 1.0
Y

F=I
Free

X

Figure 8.
The spherical shell problem. Radius=10., thickness=0.04, E=6.825x107,
v=0.3, mesh=N×N. Loading: concentrated forces as shown. Reference

solution: radial displacement at the load points=0.0940 from reference [23].
(Consistent units are used for various properties.)
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